Clinical evaluation of atlas based segmentation for radiotherapy of prostate tumours

نویسندگان

  • Christoffer Granberg
  • Anders Ahnesjö
  • Ulf Isacsson
  • Carl Sjöberg
  • Silvia Johansson
  • Heikki Tölli
چکیده

Background Semi-automated segmentation using deformable registration of atlases consisting of presegmented patient images can facilitate the tedious task of delineating structures and organs in patients subjected to radiotherapy planning. However, a generic atlas based on a single patient may not function well enough due to the anatomical variation between patients. Fusion of segmentation proposals from multiple atlases has the potential to provide a better segmentation due to a more complete representation of the anatomical variation. Purpose The main goal of the present study was to investigate potential operator timesavings from use of atlas-based segmentation compared to manual segmentation of patients with prostate cancer. It was also anticipated that, and evaluated if, the use of semi-automated segmentation workflows would reduce the operator dependent variations in delineation. Materials and Methods A commercial atlas-based segmentation software (VelocityAI from Nucletron AB) was used with several atlases of consistently, protocol based, delineated CT images to create multiple-atlas segmentation proposals through deformable registration. The atlas that was considered most representative was selected to construct single generic atlas segmentation proposals. For fusion of the multiple-atlas segmentations an in-house developed algorithm, which includes information of local registration success was used in a MATLABenvironment [1]. The algorithm used weighted distance map calculations where weights represent probabilities of improving the segmentation results. Based on results from Sjöberg and Ahnesjö the probabilities were estimated using the cross correlation image similarity measure evaluated over a region within a certain distance from the segmentation. 10 patients were included in the study. Each patient was delineated three times, (a) manually by the radiation oncologist, (b) with a generic single-atlas segmentation and (c) with a fusion of multiple-atlas segmentations. For the methods (b) and (c) the radiation oncologist corrected the proposed segmentations blindly without using the result from method (a) as reference. The total number of atlases used for case (c) was 15. The operator time spent by the radiation oncologist was recorded separately for each method. In addition a grading was used to score how helpful the segmentation proposals were for the delineations. The Dice Similarity Coefficient, the Hausdorff distance and the segmented volumes were used to evaluate the similarity between the delineated structures and organs. Results An average time reduction of 26% was found when the radiation oncologist corrected the multiple atlas-based segmentation proposals as compared to manual segmentations. Due to more accurate segmentations and more time saved, segmentation with fused multipleatlases (c) was superior to the generic single-atlas (b) method, which showed a time reduction of 17%. Hints of an affected intraand inter-operator variability were seen. Conclusions Atlas-based segmentation saves time for the radiation oncologist but the segmentation proposals always need editing to be approved for dose planning. The atlases, the fusion of these and the software implementation needs to be improved for optimal results and to extend the clinically usefulness. Christoffer Granberg Clinical evaluation of atlasbased segmentation for radiotherapy of prostate tumours Christoffer Granberg Clinical evaluation of atlasbased segmentation for radiotherapy of prostate tumours

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients

BACKGROUND Semi-automated segmentation using deformable registration of selected atlas cases consisting of expert segmented patient images has been proposed to facilitate the delineation of lymph node regions for three-dimensional conformal and intensity-modulated radiotherapy planning of head and neck and prostate tumours. Our aim is to investigate if fusion of multiple atlases will lead to cl...

متن کامل

Grading evaluation study of atlas based auto-segmentation of organs at risk in thorax

Background: The grading evaluation of atlas based auto-segmentation (ABAS) of organs at risk (OARs) in thorax was studied. Materials and Methods: Forty patients with thoracic cancer were included in this study, and for each thirteen thoracic OARs were delineated by an experienced radiation oncologist. The patients were randomly grouped into the training and the test dataset (20 each). The inves...

متن کامل

Optimization of clinical target volume delineation using magnetic resonance spectroscopic imaging (MRSI) in 3D conformal radiotherapy of prostate cancer

Background: For the purpose of individual clinical target volume assessment in radiotherapy of prostate cancer, MRSI was used as a molecular imaging modality with MRI and CT images. Materials and Methods: The images of 20 prostate cancer patients were used in this study. The MR and MRSI images were registered with CT ones using non-rigid registration technique. The CT based planning (BP), CT/MR...

متن کامل

Multi-atlas-based Segmentation of Pelvic Structures from Ct Scans for Planning in Prostate Cancer Radiotherapy

In prostate cancer radiotherapy, the accurate identification of the prostate and organs at risk in planning computer tomography (CT) images is an important part of the therapy planning and optimization. Manually contouring these organs can be a time consuming process and subject to intraand inter-expert variability. Automatic identification of organ boundaries from these images is challenging d...

متن کامل

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011